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A substantial increase in predictive capacity is needed to anticipate and 
mitigate the widespread change in ecosystems and their services in the 
face of climate and biodiversity crises. In this era of accelerating change, 
we cannot rely on historical patterns or focus primarily on long-term 
projections that extend decades into the future. In this Perspective, we 
discuss the potential of near-term (daily to decadal) iterative ecological 
forecasting to improve decision-making on actionable time frames. We 
summarize the current status of ecological forecasting and focus on how 
to scale up, build on lessons from weather forecasting, and take advantage 
of recent technological advances. We also highlight the need to focus 
on equity, workforce development, and broad cross-disciplinary and 
non-academic partnerships.

The dual climate and biodiversity crises1 jeopardize our ability to man-
age and conserve natural resources and sustain socio-economic sys-
tems. Impacts are already being felt across all levels of society, from 
individuals to nations2–4, and many of the world’s ecosystems are at 
risk of collapse5. Indeed, when considering the most severe risks facing 
society over the next 10 years, the World Economic Forum ranked envi-
ronmental changes as the top four most severe risks and they comprise 
six of the top ten6. In the face of accelerating change and increasingly 

frequent extreme climate events, responses to these crises cannot 
continue to be focused primarily on projections that extend decades 
into the future. Similarly, historical patterns (for example, species 
ranges, fire/drought/flood frequency) can no longer be relied on as the 
primary basis for environmental decision-making7. Steady-state solu-
tions do not work in a world dominated by non-equilibrium transient 
conditions; society is in uncharted territory. Moving forwards requires 
new approaches to research, management and decision-making.
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forecasts are being used in semi-arid systems to predict the impacts 
of real-time climate extremes on the likely success of ecological res-
toration efforts15,16 and the quantity and quality of grass that will be 
available for livestock to graze on17–19. In marine systems, predictions 
about the impacts of climate variability on species migrations are 
fuelling real-time multispecies forecasts of fisheries bycatch risk20,21. 
Ecological forecasts are starting to be used by freshwater managers 
to predict the impacts of climate change on a wide range of real-time 
water quality issues, including harmful algal blooms and anoxia22,23. 
On the climate mitigation side, biogeochemical forecasts (for exam-
ple, predictions of soil carbon storage and trace gas emissions that 
account for climate variability and alternative management scenarios) 
are already being used by industry as part of nature-based solutions24. 
More broadly, the ability to forecast ecosystem responses to heatwaves, 
wildfires, droughts, land-use change, biological invasions and disease 
outbreaks will help us better understand and manage non-equilibrium 
conditions25,26 and their climate and biodiversity feedbacks.

While the development and application of near-term iterative 
ecological forecasts have grown rapidly in recent years, achieving the 
predictive capacity needed by decision-makers will require a substan-
tial increase in the number of operationalized forecasts. Here we aim 
to summarize the current state of ecological forecasting research, 
how it is responding to societal needs (for example, climate change) 
and grand challenge scientific questions and where it is going, with 
a central focus on how to scale up ecological forecasting far beyond 
what is currently possible.

Global demand for ecological forecasts
While much past work on near-term ecological forecasting has focused 
on local- to regional-scale environmental issues, meaningfully contrib-
uting to international environmental goals and initiatives will require 
ecological forecasting to scale up to global issues. One place to start is 
forecasting the flows of mass and energy through terrestrial and marine 
ecosystems, as they are already present in most of the Earth system 
models that are part of the Coupled Model Intercomparison Project 
(CMIP), which in turn forms the basis for IPCC reports and projections27. 
Next-generation Earth System models already include a wide range of 
ecological processes (for example, vegetation demography, microbial 
biogeochemistry, disturbance) and ecosystems (lakes, rivers and wet-
lands; urban; agricultural), as well as a more explicit representation of 
biodiversity28,29, but these global models have primarily been applied 
to project long-term climate responses. So far, they have been under-
used at shorter timescales where (if they are properly initialized and 
propagate uncertainty30) there are opportunities to inform climate 
adaptation, mitigation, carbon monitoring and the UN Sustainable 
Development Goals (for example hunger, disease, water quality, sus-
tainability, climate action and terrestrial and marine biodiversity). 
For example, ecological forecasts could be incorporated into the UN’s 
Early Warnings for All climate adaptation initiative31, which focuses on 
global equity in forecasting, risk management, communication and 
preparedness activities from a weather and water perspective.

While long-term ecosystem forecasting is informing the UNFCCC 
through the IPCC process, biodiversity forecasting is just beginning to 
play a role in the UN Convention on Biological Diversity and the Inter-
governmental Science-Policy Platform on Biodiversity and Ecosystem 
Services (IPBES). For example, only one global scenario modelling 
effort has been integrated into IPBES so far and it was not a major 
focus of the assessment32. That said, the Group on Earth Observation’s 
Biodiversity Observation Network (GEO BON) has proposed a global 
biodiversity observing system (GBiOS), which includes the goal of 
increasing the capacity to forecast biodiversity change and the loss of 
ecological and evolutionary resilience33. GEO BON has also launched 
a new working group (EcoCode) with the aims of synthesizing biodi-
versity modelling tools, developing shared platforms and creating a 
biodiversity model intercomparison platform. These are exciting and 

Near-term iterative ecological forecasting has the potential to 
anticipate ecological change at the scale and speed needed by society8 
(Fig. 1). Such forecasts provide predictions and scenario-based projec-
tions about the future state of ecosystems and their benefits to people, 
with fully specified uncertainties that are continually updated as new 
observations become available9. In contrast to long-term projections, 
near-term forecasts (on daily to decadal timescales) are more closely 
aligned with the timescales that are most relevant to environmental 
management, and thus allow society to anticipate challenges and 
improve decisions on actionable timeframes10. Actionable forecasts 
present decision-makers with a range of predictions (and in some cases 
projections under different decision alternatives or climate extremes) 
with clear statements of forecast confidence and uncertainty that can 
be propagated into decision analyses.

Climate change is happening now. As such, near-term iterative 
ecological forecasting is becoming more and more important for 
climate adaptation and mitigation. While many ecological forecasts 
have focused on projections to 2100 and beyond3,11–14, the impacts of cli-
mate change on ecosystems and their services are increasingly urgent 
policy and management problems in the present. Recent advances in 
ecological forecasting are beginning to address this need. For example, 
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Fig. 1 | Near-term iterative ecological forecasting. Top: ecological forecasting 
provides quantitative predictions of how different management scenarios 
impact the environment on decision-relevant timescales. Bottom: iterative 
ecological forecasting involves continually updating predictions in light of new 
data. By establishing an iterative learning loop, ecological forecasting provides 
a win–win strategy: answering grand challenge questions about ecological 
predictability while improving environmental decisions. NEON, National 
Ecological Observatory Network.
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promising steps in the right direction. Even with initiatives like these, 
large-scale biodiversity forecasting will remain challenging because 
of the number of species involved and because the drivers can be 
both more complex and less well measured than those of ecosystem 
fluxes13,34. However, there is a good understanding of how climate 
change impacts biodiversity in general (for example, most systems are 
expected to shift polewards or upslope, with many communities being 
compressed, eliminated or reorganized in new combinations) and this 
should be leveraged in scenario analyses and risk assessments related 
to climate change-based loss and damages13,35,36. In addition, there are 
many areas where biodiversity forecasts can be developed to address 
specific international environmental goals. This need for forecasts is 
not limited to IPBES, but also extends to international efforts around 
sustainable use and biodiversity (Sustainable Development Goals 12, 
14 and 15), threatened and endangered species (such as CITES (Conven-
tion on International Trade in Endangered Species) and the IUCN (Inter-
national Union for Conservation of Nature)), international waters (for 
example, fisheries, whaling), neutral territories (such as Antarctica and 
CCAMLR (Commission for the Conservation of Antarctic Marine Living 
Resources)) and disease (for example, the World Health Organization). 
Overall, UN programmes and agencies have a unique opportunity to 
play a central leadership role in advancing ecological forecasting and 
its application in management decisions.

Efforts to reduce this gap in forecast development and use can 
be facilitated by combining what is known about how biodiversity 
responds in general with the available data from targeted systems and 
using iterative evaluation to refine models and prioritize data needs13. 
This iterative improvement will be most rapid when direct connec-
tions with management create learning feedback loops to improve 
outcomes. While the IPBES effort to explore plausible futures for bio-
diversity and ecosystem services used a large number of models driven 
by land-use change and climate change scenarios from integrated 
assessment models37,38, a gap remains between such long-range projec-
tions and near-term forecasts driven by policy-relevant management 
scenarios39. Scenario-based projections evaluating conservation and 
management options are particularly important for IPBES and other 
international conservation efforts because of the critical impacts of 
human choices on biodiversity preservation, as well as its resulting 
benefits to people.

One general area where ecological forecasting has the potential to 
actively inform international decision-making for climate adaptation 
and mitigation is predicting discrete events (for example, drought, 
wildfire and other disturbances, disease and pest outbreaks, coastal 
flooding, coral bleaching) and the time-lagged ecological conse-
quences of event-driven change (such as biological invasions, land-use 
change, post-disturbance regeneration and restoration). Although 
ecologists have devoted substantial attention to some of these prob-
lems, such as trying to predict which species are likely to be invasive40–42 
or understanding how ecosystems respond to drought43–45, others 
are relatively underexplored, such as developing real-time forecasts 
of forest pests46, forecasting the potential impacts of different eco-
system management strategies (for example, restoration, burning, 
grazing, herbicides, dam releases to rivers)15,16 or combining forecasts 
of multiple ecological variables to evaluate competing management 
objectives (for example, lake organic carbon storage versus methane 
production)22. Across this broad range of applications, taking a fore-
casting approach not only makes our science more robust and repeat-
able, but can force us to rethink old assumptions (both scientific and 
management-related) and open up new avenues for exploration and 
innovation47.

Putting ecological forecasting into practice at the international 
level does not have to be limited to large-scale UN efforts. Numer-
ous conservation organizations, non-governmental organizations 
(NGOs) and natural-resource industries (such as agriculture, forestry 
and fisheries) that operate at an international scale would benefit 

from forecasts to assist with climate adaptation, the management 
of threatened, invasive, commercially important or bycatch species, 
ecosystem restoration, sustainability certification or natural climate 
solutions. Similarly, as COVID-19 made apparent, emerging infectious 
diseases are increasingly global in impact and frequently zoonotic in 
origin. A related emerging idea is forecast-based action, which pro-
actively ties event-driven emergency management plans, including 
the release of emergency funds, to forecast-based thresholds (for 
example, climate extremes), rather than acting reactively to disaster 
events48. Forecast-based action approaches have been adopted by 
international humanitarian organizations (such as the Red Cross) and 
by the UN itself to reduce the impacts of natural disasters, including 
many that are exacerbated by climate change and ecological in nature 
(such as plant drought stress). However, forecast-based action has 
not yet been adopted by international conservation organizations or 
applied explicitly to the problem of climate adaptation.

Finally, there are unique global opportunities to help build out 
ecological forecasting endeavours. Many ecological forecasts already 
rely heavily on datasets that are international in scope, such as mete-
orological forecasts, remote sensing data and large-scale community 
databases (for example, the Global Biodiversity Information Facility, 
FLUXNET, GLEON), which creates natural pathways for the spatial 
scaling of forecasts and for further international cooperation on moni-
toring and data sharing (for example, Group on Earth Observations). 
Similarly, efforts to build an ecological forecasting community, which 
includes community coordination on training, tools, standards and 
synthesis, have primarily been grass-roots operations (see the ‘State 
of ecological forecasting’), but such efforts are themselves increas-
ingly international in scope. This international growth in focus and 
investment has not been distributed equally, however. Data volumes, 
investments in research and development, and existing ecological 
forecasts are all substantially biased towards the global north (with the 
important exception of satellite imagery), while the impacts of the dual 
biodiversity and climate crises are biased towards the global south49,50. 
Investments in ecological forecasting (development, training, data col-
lection and so on) are critically needed to deliberately address historic 
and current inequities, both within and across nations, and to support 
efforts led by Indigenous peoples.

Scientific acceleration and grand challenge 
questions
The cyclic nature of iterative forecasting aims to establish a learning 
loop in which predictions can be meaningfully compared with new 
observations and the models then updated to improve future predic-
tions (Fig. 1). This approach is central to the idea of adaptive manage-
ment, which emphasizes the importance of evaluating and learning 
from the outcomes of previous decisions to inform future decisions51. 
Similarly, results from numerous disciplines have demonstrated that a 
learning loop is essential to improve forecasting skill52,53. As such, the 
ecological forecasting cycle can be a win–win—simultaneously improv-
ing decision-making while accelerating scientific understanding. This 
is possible because well-executed ecological forecasts are specific 
and quantitative (and thus falsifiable). Forecasts provide continuous 
real-time feedback, which facilitates rapid testing of the ecological 
hypotheses embedded in the forecasting models. In many cases the 
same forecasts can be used to address both decision-focused and basic 
science questions, helping to align the needs of these two fields of the 
ecological research community. For example, the Forecasting Lake 
And Reservoir Ecosystems system is used by drinking-water reservoir 
managers to improve water quality in the face of non-stationary climate 
variability, while scientists are using the same forecasts to improve 
understanding of freshwater ecosystem dynamics22,54,55. More broadly, 
comparative analyses across forecasts for different systems have the 
potential to answer grand challenge questions about the predictability 
of nature56–58: how far into the future can different aspects of nature be 
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successfully predicted? Why do some ecological systems respond to 
climate change more predictably than others? When are ecological fore-
casts limited by the quality of other forecasts (for example, weather) 
that are commonly used as model inputs? Is ecological understanding 
transferable across systems? What do the answers to these questions 
tell us about the overarching rules and patterns in ecology?

Existing theory about ecological predictability has focused on 
two key metrics (Fig. 2): (1) the rate at which forecast uncertainty grows 
with time; and (2) the limit at which forecast accuracy is no better than 
chance59. Our previous work showed that the uncertainty growth rate 
is a function of uncertainties in five key inputs and the sensitivity of 
the forecast to each of these inputs56. Atmospheric scientists used 
this type of uncertainty decomposition in the 1960s to determine that 
weather forecast uncertainty was dominated by uncertainty in the 
initial conditions60, a theoretical advance that has guided large-scale 
investments (US$ billions per year) in weather monitoring, modelling 
and data assimilation that aim to constrain the initial condition uncer-
tainty in each new forecast. These investments have driven decades 
of continual improvements in the skill, understanding and utility of 
weather forecasts61. Ecological forecasting is now poised to make a 
similar leap in foundational understanding. While some ecological 
forecasts are (like weather) highly sensitive to initial conditions, others 
are dominated by sensitivity to the uncertainty in external drivers (for 
example, climate change), model structural (process) uncertainty, data 
limitations in constraining model parameters and the inherent vari-
ability of biological systems30,56,62–65. Understanding which sources of 
uncertainty dominate which ecological forecasts is critical to deploying 
effective monitoring, modelling and model–data integration efforts. 
Furthermore, unlocking the grand challenge of understanding the pat-
terns of predictability in nature will require a comparative approach 
across the diversity of ecological systems to quantify which ecological 
forecasts are limited by which uncertainties56. Ultimately, being able 
to anticipate which ecological systems will be predictable, and what 
information will be needed to constrain new predictions, will drive 
improvements in our ability to make decision-relevant forecasts and 
decision-makers’ abilities to make better and more confident decisions.

Learning from meteorology while addressing 
unique challenges
Ecological forecasting has much to learn from other forecasting 
communities that are deeply embedded in decision-making. For 
example, decades of progress in meteorology demonstrate that reli-
able predictions are possible for complex natural systems if iterative 
approaches are adopted61,66,67. Meteorology also illustrates the potential 
for both the open provisioning of public goods (such as climate data, 

weather forecasts, severe weather alerts) and private-sector innova-
tion (for example, broadcast meteorology, weather apps, artificial 
intelligence-augmented forecasts)68. Furthermore, weather forecasts 
are more than just the outputs from numerical models. Multiple times 
a day, at meteorological centres around the world, weather models are 
iteratively updated with new data from a globally connected network of 
satellite and ground sensors, and new predictions are generated from 
the updated models. These numerical predictions are then interpreted 
and adjusted by human forecasters and algorithms to produce the 
forecasts society depends on69. Ecological forecasting should build on 
this framework by continually updating forecasts as new data become 
available to provide decision-makers with the best available scientific 
insight, accelerate scientific discovery and improve understanding of 
ecological predictability more broadly61,70.

Ecological forecasting should also draw inspiration from the early 
days of numerical weather prediction, when forecast skill was low. 
Weather forecasters had a choice between stepping back from forecast-
ing until the mechanics of the atmosphere were better understood or 
stepping forwards into an iterative forecast cycle of learning by doing66. 
By stepping forwards, they achieved a critical win–win of relentless 
improvements in theory, skill and utility to society9. Ecology is now at 
a similar crossroads. Society is facing climate and biodiversity crises, 
but finally has the observations, models, theory and prototype iterative 
forecasts to improve decisions, both big and small8.

Compared with other forecasting fields, however, ecological fore-
casting presents unique challenges. Whereas a weather model has 10–20 
state variables that follow the same physical equations throughout 
the atmosphere, there are millions of species on the planet and indi-
vidual organisms vary (both within and between species) in the pri-
mary drivers of their dynamics and their responses to those drivers. 
Organisms are heterogeneous across space, time and phylogeny in 
how they respond to changes in climate and human activities, and those 
responses are continually adapting and evolving across a cascade of dif-
ferent timescales. Even if there is only interest in forecasting emergent 
ecosystem processes (such as carbon, water, and nutrient cycling), 
biodiversity causes the parameters in the equations, and sometimes the 
equations themselves, to continuously change across space and time. 
However, this variability is not unconstrained, nor wholly unpredictable. 
As the data necessary to make forecasts are only available for a fraction 
of the world’s species, comparative analyses of predictability and fore-
cast transferability (for example, how parameters and equations change 
across space, time and taxa) are critical to the advancement of ecological 
forecasting. Beyond being important to theory, sharing information 
across forecasts of different systems (through hierarchical models of 
across-species parameter variability, for example) lowers the amount 
of data necessary to make predictions, allowing the scope of ecological 
forecasting to be extended. This can be particularly important for rare 
and novel (for example, invasive) taxa.

The inherent complexity of biodiversity introduces further chal-
lenges in ecological forecasting related to both monitoring require-
ments and the infrastructure for producing forecasts. Weather 
forecasting represents a single large forecasting problem that nations 
have addressed by constructing large centres with dedicated staff, 
models and both physical infrastructure and cyberinfrastructure. Eco-
logical forecasts represent a spectrum of forecasting challenges that 
vary in size (a single global forecast to many local forecasts), approach 
(process-based, statistical, machine learning), system (terrestrial, 
freshwater, marine) and biological scale (physiological, organismal, 
population, community, ecosystem/biogeochemistry). The diversity 
of forecasts has resulted in numerous unique data processing and 
forecasting workflows that require non-trivial costs and expertise to 
build and maintain22,71–74. That said, these challenges also represent 
opportunities to use forecasts to optimize and iteratively adapt moni-
toring programmes, to develop new sensor technologies and to better 
integrate ecological monitoring and infrastructure75–77. The expansion 
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of ecological forecasting has delivered progress and opportunities to 
leverage economies of scale through reusable community standards78, 
workflows, models and cyberinfrastructure49,71 and to reduce the costs, 
time and learning curve involved in launching and maintaining fore-
casts. These advances will not be limited to near-term forecasts, but will 
simultaneously increase the capacity for, and confidence in, ecological 
forecasting on climate timescales.

Ecological forecasting is also generating opportunities to improve 
forecasting across disciplines. The challenges of forecasting ecological 
systems mean that researchers need to revisit theoretical assumptions 
around predictability56 and the data assimilation tools used to integrate 
new observations into forecasts30 while acknowledging that a wider 
range of uncertainties must also now be accounted for (Fig. 2). Hybrid 
approaches that combine traditional process-based models and data 
assimilation with newer machine learning methods are advancing 
rapidly in both Earth system and ecological forecasting79–83. Ecologi-
cal forecasters are important consumers of forecasts (atmosphere, 
oceans and so on), translating these physical forecasts into information 
about Earth’s life support systems, on which humanity depends. The 
biosphere also generates feedbacks to other parts of the Earth system, 
such that improvements in ecological forecasting will improve Earth 
system predictions of the boundary conditions used in both weather 
and climate models29,84,85.

State of the ecological forecasting community
Dramatic improvements in ecological forecasting are now emerging 
that were unimaginable even a decade ago. Advances in sensor tech-
nologies, satellites and genomics provide access to unprecedented 
volumes of environmental data that are born-digital and increasingly 
near real time. The urgency of climate change has driven shifts towards 
large-scale networked science, which in turn has made data access 
more standardized and equitable—both in terms of top-down inter-
national observatories86 (such as NEON, Australia’s Terrestrial Eco-
system Research Network (TERN), the South African Environmental 
Observation Network (SAEON) and the International Long Term Eco-
logical Research network (ILTER)) and bottom-up globally distributed 
experiments with standardized protocols (NutNet87,88, DroughtNet89, 
Cellulose Decomposition Experiment (CELLDEX)90 and so on). At the 
same time, there have been rapid advances in computational methods 
and cyberinfrastructure, including revolutions in artificial intelligence 
and machine learning91,92, workflow containerization93, distributed 
cloud computing and cloud-native data storage. Collectively, these 
advances have fuelled the recent growth of ecological forecasting and 
herald opportunities for further increases in scope and reach.

To leverage these technical advances, ecological forecasting needs 
to build coherent communities of practice to support its growth as a 
discipline94. Successful ecological forecasts represent a convergence 
of expertise across a range of ecological subdisciplines, the social and 
decision sciences, physical environmental sciences, computational 
and data sciences and statistics8. However, each discipline operates 
under different norms and approaches, as do the different sectors 
(academia, agencies, industry, NGOs and so on) involved in forecast 
research, development and operationalization. Overcoming the result-
ing barriers will require: educational efforts designed to broaden 
disciplinary backgrounds and train researchers in interdisciplinary 
collaboration95,96, transdisciplinary organizations and teams with the 
time and commitment to develop shared interests and vocabularies97 
and funding mechanisms to support social science and non-academic 
partner collaborations98. Expanding the ecological forecasting com-
munity in a way that includes everyone influenced by climate change 
will also require actively addressing issues of equity—including who 
has access to ecological forecasting tools and data streams, who can 
interpret and use them for decision-making99 and whose perspec-
tives and priorities are incorporated into their development and 
dissemination100.

This sort of community building has accelerated recently through 
efforts such as the Ecological Forecasting Initiative (EFI), an interna-
tional grass roots consortium aimed at fostering a community of prac-
tice around ecological forecasting8. EFI has engaged thousands of 
academic, agency, NGO and industry scientists and partners through a 
broad mix of international chapters and conferences, working groups, 
webinars, articles, videos, standards78, policy briefs, training opportuni-
ties (including minority-serving institution student mentoring and fac-
ulty partnerships) and contributions to government reports16,67,98,101,102. 
Since 2021, EFI’s Research Coordination Network has hosted an ongoing 
NEON Forecasting Challenge72,103,104 with the goal of predicting data 
before it is collected. Over 200 teams (including 11 university courses 
and 2 minority-serving institution mentoring programmes) have partici-
pated and the Challenge has developed new educational resources and 
community cyberinfrastructure105,106, as well as comparative analyses 
that help tackle grand challenge questions103,104. EFI’s progress is indica-
tive of a new and growing discipline in which the number and diversity 
of forecasts, forecasters, decision scientists and end users could be 
rapidly scaled up to help address the climate and biodiversity crises.

A path forwards
Responding to pressing global environmental challenges in an era of 
climate change will require substantial local and global development 
to scale up the ecological forecasting enterprise. Rapid progress has 
been made, particularly over the past 5 years as efforts to bring together 
the community have accelerated. Meeting this challenge requires an 
intentional and inclusive approach to build the human dimensions of 
our forecasting capability.

The translation of forecasts from research to societal impacts 
has required new cross-sector partnerships that span academia, gov-
ernmental agencies, industry, NGOs and other interested parties to 
be established. Furthermore, the technical requirements for building 
operational ecological forecasts often exceed the capacity of govern-
mental agencies (the traditional producers of forecasts). For example, 
the soil carbon monitoring being conducted by the nascent carbon 
credit industry (which serves as both a key input and validation of 
their carbon forecasts) to inform climate mitigation is already on 
track to surpass the data volumes in government agency soil maps. 
While efforts like EFI have laid the groundwork for building bridges 
across sectors (for example, through interagency and cross-sector 
workshops and trainings), in scaling up ecological forecasting there is 
an important need to foster even greater innovation and engagement 
across a broader spectrum of partners, end users and decision-makers. 
Key to these partnerships is the idea of co-production: groups that 
will use forecasts need to be engaged in the process of launching new 
ecological forecasts from the outset by informing and contributing to 
the goals, approaches and product design107–109. These partnerships and 
the associated scaling activities must acknowledge historical biases in 
participation and perspectives (for example, towards the global north) 
and actively promote equity in participation and recognition of margin-
alized perspectives going forwards. Such co-production is necessary 
to ensure that forecasts are equitable, useful, usable and credible110.

One key part of community building is engaging groups that have 
been traditionally excluded from both science and decision-making. 
For example, scientific research funding in the United States goes dis-
proportionately to white principal investigators111 and racial minority 
groups earn a disproportionately low fraction of US Earth science doc-
torates112. At the same time, many of the world’s environmental problems 
disproportionately impact members of marginalized groups, including 
Indigenous communities and the urban poor6,113. Furthermore, while 
ecological forecasting is global in scope, low- and middle-income coun-
tries are under-represented in both research and community participa-
tion despite absorbing a disproportionately large share of the world’s 
biodiversity, carbon storage and climate impacts49,50. Active invest-
ment by international bodies in the building of ecological forecasting 

http://www.nature.com/natureclimatechange


Nature Climate Change | Volume 14 | December 2024 | 1236–1244 1241

Perspective https://doi.org/10.1038/s41558-024-02182-0

capabilities in the global south, much as the World Meteorological 
Organization has historically done for meteorology114, would help to 
address both these inequities and international climate, biodiversity 
and sustainability goals. It is essential to actively ensure that our work 
not only broadens participation among these groups, but also helps 
identify and address the underlying structural issues that create and 
sustain their under-representation in the first place.

Increasing forecasting capacity will also require changes in training 
across a wide range of sectors, from boosting the number of individuals 
with the technical expertise to produce usable forecasts115, to training 
the next generation of managers to better use forecasts116, to using 
questions of prediction to increase the scientific literacy of the broader 
public. Training in ecological forecasting also goes beyond technical 
topics such as modelling and data science. It requires interdisciplinary 
teams that are able to integrate expert knowledge about a specific eco-
logical process, the social context of the decisions being informed by the 
forecast, the decision science frameworks for making these decisions 
and the legal and ethical questions about what should and should not be 
forecast117. Examples of such training efforts have grown rapidly in the 
past 5 years, ranging from introductory ecology courses taught from 
a predictive perspective, to minority-serving institution mentoring 
in environmental data science, to dedicated upper-level forecasting 
courses to academic and non-academic workshops. Moving forwards, 
our universities and professional societies (both research and manage-
ment) can help by making such training more broadly and equitably 
available, including opportunities for learners without the ability to 
travel to in-person opportunities and those facing technological chal-
lenges, such as a lack of stable internet access100.

Community building is also key to advancing theory and technol-
ogy. Comparative analyses are central to understanding patterns of 
predictability and transferability, and to improving forecasts by shar-
ing information across systems and species about model structure 
and parameters. Syntheses beyond the NEON Challenge are currently 
limited by the number and diversity of forecasts available and by the 
forecasts that do exist not being sufficiently catalogued, archived and 
interoperable for synthetic analysis56,57,78. Achieving the economies of 
scale required to generate such a broad catalogue of forecasts, as well 
as to respond to global environmental challenges, depends on the 
development and adoption of community conventions surrounding 
shared tools and cyberinfrastructure and the development of com-
munity norms around using them. The expansion of such technologies 
should move beyond academia to a model where agencies and industry 
play a central role in their co-production and adoption.

In conclusion, ecological forecasting is at a critical point for future 
growth, similar to weather forecasting in the twentieth century, and 
cannot afford to step back. Stepping forwards requires a quantum leap 
in forecasting capacity, game-changing scientific breakthroughs and 
technological developments and a new twenty-first-century vision of 
data-driven environmental management. The nations of the world, 
along with UN bodies, major international corporations and NGOs, can 
help by integrating ecological forecasting into their climate adaptation 
and mitigation strategies. At the same time, the scientific community, 
spanning academia, agencies and industry, can help build capacity to 
respond to this urgent need. Ecological forecasting simultaneously 
offers a new set of tools to advance these efforts and a new frontier of dis-
covery about how nature works. Making forecasts of nature mainstream, 
and developed by diverse sections of society, will generate the foresight 
to mitigate further degradation and enable us to proactively build a 
future that is climate resilient and nurturing for people and the planet.
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