
Ecology and Evolution. 2023;13:e10001.	 ﻿	   | 1 of 16
https://doi.org/10.1002/ece3.10001

www.ecolevol.org

Received: 4 August 2022 | Revised: 13 February 2023 | Accepted: 29 March 2023
DOI: 10.1002/ece3.10001  

A C A D E M I C  P R A C T I C E  I N  E C O L O G Y  A N D  E V O L U T I O N

Assessing opportunities and inequities in undergraduate 
ecological forecasting education

Alyssa M. Willson1  |   Hayden Gallo2 |   Jody A. Peters1 |   Antoinette Abeyta3 |   
Nievita Bueno Watts4 |   Cayelan C. Carey5  |   Tadhg N. Moore6 |   Georgia Smies7 |    
R. Quinn Thomas8 |   Whitney M. Woelmer5 |   Jason S. McLachlan1

1Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
2Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, Indiana 46556, USA
3Mathematics, Physical and Natural Sciences Division, University of New Mexico, Gallup, Gallup, New Mexico 87301, USA
4Indian Natural Resource Science & Engineering Program, California Polytechnic State University, Humboldt, Arcata, California 95521, USA
5Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
6UNEP GEMS/Water Capacity Development Centre, University College Cork, Cork, Ireland
7Division of Natural Resources, Salish Kootenai College, Pablo, Montana 59855, USA
8Department of Forest Resources and Environmental Conservation, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Antoinette Abeyta, Nievita Bueno Watts and Georgia Smies are affiliated with a Minority Serving Institution with high Native American enrollment.  

Correspondence
Alyssa M. Willson, Department of 
Biological Sciences, University of Notre 
Dame, 100 Galvin Life Sciences, Notre 
Dame, IN 46556, USA.
Email: awillso2@nd.edu

Funding information
Alfred P. Sloan Foundation; National 
Science Foundation, Grant/Award 
Number: 1926388 and DEB-1926050; 
Graduate Research Fellowship; University 
of Notre Dame, Grant/Award Number: 
Arthur J. Schmitt Leadership Fellowship

Abstract
Conducting ecological research in a way that addresses complex, real-world prob-
lems requires a diverse, interdisciplinary and quantitatively trained ecology and 
environmental science workforce. This begins with equitably training students in 
ecology, interdisciplinary science, and quantitative skills at the undergraduate level. 
Understanding the current undergraduate curriculum landscape in ecology and en-
vironmental sciences allows for targeted interventions to improve equitable educa-
tional opportunities. Ecological forecasting is a sub-discipline of ecology with roots 
in interdisciplinary and quantitative science. We use ecological forecasting to show 
how ecology and environmental science undergraduate curriculum could be evalu-
ated and ultimately restructured to address the needs of the 21st century workforce. 
To characterize the current state of ecological forecasting education, we compiled 
existing resources for teaching and learning ecological forecasting at three curricu-
lum levels: online resources; US university courses on ecological forecasting; and US 
university courses on topics related to ecological forecasting. We found persistent 
patterns (1) in what topics are taught to US undergraduate students at each of the cur-
riculum levels; and (2) in the accessibility of resources, in terms of course availability 
at higher education institutions in the United States. We developed and implemented 
programs to increase the accessibility and comprehensiveness of ecological forecast-
ing undergraduate education, including initiatives to engage specifically with Native 
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1  |  INTRODUC TION

Undergraduate ecology education prepares the next generation 
of scientists to address the complex environmental problems fac-
ing 21st century society. Increasingly, environmental and eco-
logical problem-solving requires using quantitative (Barraquand 
et al.,  2014; Farrell & Carey,  2018) and interdisciplinary (Boon & 
Van Baalen,  2018; NASEM,  2005) research methods and skills. 
Introducing undergraduate students to sub-disciplines of ecology 
that focus on quantitative and interdisciplinary skills can increase 
students' preparedness to contribute to ecological and environmen-
tal research and problem solving in graduate school and in their ca-
reers (Farrell & Carey, 2018; Hounshell et al., 2021). Not only should 
education focus on training students broadly in quantitative and in-
terdisciplinary methods, but also there is a strong need for targeted 
efforts that promote educational equity and inclusivity (Bowser & 
Cid, 2021; Graham et al., 2013). Providing opportunities to students 
who would not traditionally receive quantitative and interdisciplin-
ary training enables a greater diversity of scientists to contribute 
a broader range of ideas and perspectives which will inherently 
represent more diverse interests from relevant parties (Bowser & 
Cid, 2021; Cheryan et al., 2017; Gardner-Vandy et al., 2021; Graham 
et al., 2013; Hofstra et al., 2020; Kozlowski et al., 2022; Morrison & 
Steltzer, 2021; NASEM, 2021a). Numerous recent publications have 
highlighted the continued lack of diversity among science students 
and professionals (Hunter et al.,  2010; Miriti,  2019, 2021; Riegle-
Crumb et al., 2019; Schell et al., 2020), particularly in quantitative 
and data science fields (Paxton, 2020). Consequently, we urge for 
greater attention to how to improve the equity of science education, 
as one component of addressing this pervasive problem.

We contend that ecological forecasting (EF) offers a promising 
approach to leveraging ecology and environmental science educa-
tion for addressing 21st century environmental challenges (Moore, 
Carey, & Thomas, 2022, Moore, Thomas, et al., 2022; Box 1). Making 
accurate, quantitative forecasts about the future state of ecosystems 
is an urgent need to improve scientific understanding of ecological 
phenomena and to implement appropriate policy and management 
decisions (Dietze, 2017a). Examples of quantitative ecological fore-
casts include forecasts of the global carbon cycle (Gao et al., 2011), 
water quality forecasts (Carey et al.,  2022), and epidemiological 
forecasts (Oidtman et al., 2021), each of which informs policy and 
management. To keep pace with the growing demand for forecasts, 
an increasing number and diversity of scientists must be available to 

contribute to the discipline. This means that more scientists must be 
familiar with, or even have expert knowledge on, EF, including quan-
titative and interdisciplinary ecological research methods. Despite 
its importance for 21st century policy and management (Bradford 
et al., 2020) and relevance for learning quantitative and interdisci-
plinary methods, EF is seldom taught at the undergraduate level.

EF not only can help address complex environmental problems, 
but also offers an approach to undergraduate education in which key 
concepts and skills, including quantitative skills and interdisciplinary 
team building, can be taught under a unifying framework (Box 1). We 
take an approach to EF consistent with the Ecological Forecasting 
Initiative (Dietze & Lynch, 2019), a grassroots network of interdis-
ciplinary researchers with the collective goal of building a global 
community of practice around near-term, iterative EF. This approach 
is grounded in the disciplines of ecology and statistics, consistent 
with the tradition of predictive ecology. It additionally promotes the 
integration of social sciences with these disciplines to improve the 
applicability of forecasts to end users, science communication, and 
science literacy, to name a few applications of social science con-
cepts. As an emerging sub-field with an active scholarly community, 
there are numerous opportunities to consider how to make EF more 
inclusive and equitable to students and professionals from under-
represented backgrounds. Additionally, establishing community 
norms in an emerging sub-field may allow for principles of inclusiv-
ity and equity to become part of the identity of the field from its 
inception, an approach that may be easier to facilitate than trying 
to change norms of an existing discipline. For these reasons, EF, an 
emerging sub-field with a suite of pedagogical benefits for under-
graduate students (Box 1), offers a timely example of how to revise 
and expand the existing ecology and environmental sciences (EES) 
curriculum to better meet the needs of undergraduate students and 
the science workforce postgraduation. While EF is not the only way 
to achieve more quantitative and interdisciplinary undergraduate 
training, it does invite EES researchers and educators to engage in a 
larger conversation about the state of EES education.

Despite persistent calls over decades for increasing attention 
to be given to quantitative, predictive ecology (Clark et al.,  2001; 
Dietze, 2017a; Houlahan et al., 2017; Jørgensen, 2002), undergrad-
uate students in domain sciences (e.g., biology) are often not suf-
ficiently introduced to quantitative methods to contribute to this 
body of research (Rawlings-Goss et al., 2018). Many higher educa-
tion institutions do not require quantitative coursework within bi-
ology and environmental science majors: Quantitative coursework 

American undergraduates and online resources for learning quantitative concepts at 
the undergraduate level. Such steps enhance the capacity of ecological forecasting to 
be more inclusive to undergraduate students from diverse backgrounds and expose 
more students to quantitative training.

K E Y W O R D S
curriculum, ecological forecasting, inclusion, STEM education, undergraduate education
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may only be offered in other disciplines, without collaboration 
with domain science instructors (Farrell & Carey,  2018; Robeva 
et al., 2020). Similarly, courses on high-level quantitative concepts, 
such as mechanistic modeling, are infrequently taught at the under-
graduate level to ecology students. At the time of publication and 
to the authors' knowledge, fewer than 15 courses on EF are offered 
across the United States (Appendix S1, Table 1), according to both 
our use of self-reported courses on EF through EFI and through a 
search for EF courses in the course catalogs of US land grant in-
stitutions (Appendix  S1). Collectively, this results in baccalaureate 

graduates who may be underprepared to contribute to research 
addressing 21st century global environmental problems, such as EF 
research.

In addition to relying on quantitative methods, address-
ing 21st century ecological research questions requires diverse 
teams of scientists and end users. Having diverse research teams 
presents multiple benefits for science and society (National 
Research Council, 2015). Researchers from historically underrep-
resented groups tend to make more novel connections between 
scientific concepts (Hofstra et al.,  2020; Kozlowski et al.,  2022; 

BOX 1 Ecological forecasting

What is ecological forecasting?

Ecological forecasting (EF) is the process of producing quantitative predictions for an unknown state of an ecosystem or its services 
with quantified uncertainty (Carey et al., 2022; Clark et al., 2001). This sub-field integrates theory and methods from multiple disci-
plines outside of ecology (Woelmer et al., 2021), including
•	 data science
•	 computer science
•	 statistics
•	 social sciences

EF is a relatively new, emerging sub-field (Dietze, 2017a; Lewis et al., 2022), meaning that opportunities for learning EF are relatively 
infrequent, but also that opportunities to develop curricula at the undergraduate level and to consider the equity of EF education 
are abundant.

Why teach and learn ecological forecasting?

Teaching undergraduate students ecology through the perspective of EF can offer instructors a way to integrate multiple pedagogi-
cal benefits in a unifying framework. Specifically, EF
1.	Facilitates connections between scientific concepts
•	 EF introduces students to concepts from multiple disciplines (e.g., ecology, mathematics, social sciences) under a unifying framework 
(i.e., EF) that can promote interdisciplinary thinking for solving complex problems (Boon & Van Baalen, 2018) and student skill building 
(Vogler et al., 2018)

•	 Learning about ecological modeling (a component of EF) has been shown to increase students' “systems thinking”— students' ability to 
recognize the interrelatedness of components of an ecological system— relative to a traditional ecology education (Carey et al., 2020)

•	 EF encourages integration of the social sciences with the natural sciences, which can increase students' perceptions of the relevance of 
the natural sciences to their lives (Tripp & Shortlidge, 2019) and offers students an opportunity to navigate multiple interested parties in 
applied science contexts (Parr et al., 2007)

2.	 Improves student engagement over traditional teaching methods
•	 EF emphasizes the real-world applications of interdisciplinary science training (Boon & Van Baalen, 2018), which facilitates instruction 
using project-based, active learning strategies that increase engagement (Graham et al., 2013; Vogler et al., 2018)

•	 Teaching EF using specific, case-based examples (see Discussion: Current EFI education initiatives) presents the opportunity to offer 
students culturally relevant curriculum (Harris et al., 2020), which promotes engagement and persistence particularly among students 
from underrepresented backgrounds (Corneille et al., 2020; Gardner-Vandy et al., 2021)

3.	Prepares students for the scientific workforce
•	 Iterative EF, in which model predictions representing ecological hypotheses are repeatedly confronted with data, represents one of the 
most rigorous tests of ecological theory (Dietze, 2017b). Students with a background in EF enter the workforce with a suite of tools well 
suited to advancing scientific theory through iterative forecasts

•	 EF emphasizes quantitative skills, such as modeling, coding, and statistics, thus providing a means to introduce students to skills that are 
useful for students interested in pursuing careers in any domain of science (Barraquand et al., 2014)

•	 Predicting the state of ecosystems and their services under specific climate and management scenarios offers students the means to 
provide policymakers and interested parties with a tool for making policy and management decisions

•	 EF offers students an opportunity to become familiar with the unique benefits and challenges of contributing to interdisciplinary 
research, which has become increasingly in-demand as complex global change problems require interdisciplinary solutions 
(NASEM, 2005, 2022)

•	 Engaging with a curriculum that includes interface with end users, science communication, and data visualization increases students' 
science literacy, which promotes skills such as problem solving and adaptability that are integral to the 21st century workforce (Council 
et al., 2010)
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NASEM,  2021a), suggesting that more diverse research teams 
produce more innovative research. Increasing the diversity of 
scientists also means that the identities of those working on is-
sues such as climate change better represent the identities of the 
people affected by the same issues (Bowser & Cid, 2021). Finally, 
recruiting students from historically underrepresented groups 
into the scientific workforce increases the number of qualified 
and talented workers (Cheryan et al., 2017; Graham et al., 2013). 
These reasons to promote diversity within scientific disciplines 
operate concurrently with the more important perspective that di-
verse research teams are morally good (Morrison & Steltzer, 2021; 
NASEM, 2022); the worthiness of diverse research teams should 
not rely on the commodification of the contributions of scientists 
from underrepresented backgrounds (Gardner-Vandy et al., 2021). 
Making concerted efforts to improve the equity of educational op-
portunities represents a promising way to improve the persistence 
of students from diverse backgrounds into scientific disciplines 
(Graham et al., 2013).

Unfortunately, numerous barriers hinder the attainment of eq-
uitable science education and career opportunities in the United 
States. At the undergraduate level, students from marginalized 
ethnicities and genders show lower persistence in undergraduate 
science majors than White male students (Bowser & Cid,  2021). 
Systematic lower persistence of students from marginalized ethnic-
ities and genders is a result of the numerous systemic barriers to 
participation these students face. Factors contributing to the per-
sistence disparity include, among many other inequities, a general 
lack of culturally relevant science curriculum (Collins, 2018; Corneille 
et al., 2020; Rawlings-Goss et al., 2018) and inequality in access to 
higher education resources (Dolcini et al.,  2021; NASEM,  2021b; 
Sanders & Scanlon, 2021). Because ecology and environmental sci-
ence research and curriculum has largely been constructed using a 
White, Western framework (David-Chavez & Gavin, 2018), scientific 
topics covered in coursework, the examples used to contextualize 
the information, and even what scientific questions we choose to 
ask can be irrelevant and inaccessible to students from marginalized 
backgrounds (Reano, 2019).

Compounding these problems are the structural inequities in 
access to technology and higher education in the US. Science edu-
cation can be inaccessible to students without consistent access to 
the internet or to computer hardware often required for homework 
and online learning. Students without access to these resources 
are disproportionately from marginalized backgrounds (Dolcini 
et al.,  2021; Sanders & Scanlon,  2021). Similarly, highly selective 
higher education institutions, where instructors are more likely to 
have disciplinary expertise in emerging research sub-fields such as 
EF, disproportionately enroll White students (NASEM, 2021b). This 
means students from marginalized backgrounds may not have the 
ability to enroll in courses on topics such as EF.

Here, we use EF to show how EES researchers and educators 
could begin to revise EES undergraduate education in the United 
States to meet the demands of the 21st century scientific workforce. 
Because EF is an emerging sub-field (Woelmer et al., 2021), there are 

few existing educational resources specific to EF, making resource 
development a high priority for the EF community. Consistent 
with recommendations from the National Academies of Sciences, 
Engineering, and Medicine on recruiting workers into the scientific 
workforce (NASEM, 2021b), we specifically emphasize developing 
equitable educational opportunities for undergraduate students. 
Leveraging the attributes of EF as an emerging, quantitative, and 
interdisciplinary sub-field, we evaluate how EF can be used as one 
approach to updating and revising undergraduate EES curriculum in 
a way that simultaneously emphasizes quantitative and interdisci-
plinary skills and promotes educational equity.

One place to begin revising the existing EES curriculum is to un-
derstand the current curriculum landscape (NASEM, 2020, 2021a; 
Rawlings-Goss et al.,  2018). Understanding what online materials 
and courses already exist allows educators to identify gaps in the 
existing EES curriculum to which finite time and resources could 
be allocated. We first assessed the existing educational resources 
for gaps in the EES curriculum at three curriculum levels (Figure 1). 
We focus on two aspects of the EES curriculum landscape via two 
questions. First, we address the question “What patterns exist in 
the availability of resources for teaching and learning topics related 
to EF at the undergraduate level?” Second, we address the question 
“Who has access to the online resources and courses related to EF, 
based on who has access to the infrastructure required to access on-
line resources and to the institutions at which courses are taught?” 
In response, we discuss programs the EF community has initiated to 
address the gaps we identified. We conclude with a discussion of 
future directions for the EF community, with applications to other 
EES sub-disciplines.

2  |  METHODS

To examine the current state of EF undergraduate curriculum, we 
defined three curriculum levels (online resources; forecasting course 
lessons; and forecasting-adjacent courses) (Methods: Description 
of Curriculum Levels). We collated resources available for teaching 
and learning EF at each curriculum level (Methods: Data Collection). 
Then, we compared the resources at each of the three curriculum 
levels, both in terms of how they are distributed among educational 
topics associated with an EF education, and how accessible they are 
to students from diverse backgrounds and at diverse higher educa-
tion institutions.

2.1  |  Description of curriculum levels

We defined multiple curriculum levels (online resources; forecasting 
course lessons; and forecasting-adjacent courses), on which we col-
lated available resources for teaching and learning EF (see Methods: 
Data collection). We examine three curriculum levels to understand 
how many types of resources contribute to the availability and ac-
cessibility of ecological forecasting education (Figure 1).
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Online resources were publicly available online, without the need 
to pay or ask permission to access the material. We define educational 
material as any course content, video, article, hands-on learning op-
portunity, code, or other online material that can be used to teach or 
learn about EF and adjacent topics (e.g., basic statistical techniques, 
foundational domain knowledge) (see Appendix S1, Table 3 for a list of 
formats of educational material and their definitions). Our definition 
of online resources ignores the contributions of massive open online 
courses (MOOCs), a growing platform for knowledge transfer to a 
large quantity of students (Zawacki-Richter et al., 2018). We chose to 
omit EF-related MOOCs from our analysis of online resources to limit 
the complexity of our data collection and analysis procedures and we 
recognize that this choice impacts our characterization of online re-
sources as generally having shallow material coverage.

2.2  |  Data collection

We collected data at each curriculum level (Figure  1). We began 
our search for online educational material by using Google to 

search terms related to each of our EF topics (defined below, “Data 
Categorization”) in combination with terms such as “tutorial” and 
“learn” (e.g., “ecology tutorial,” “learn R"). These searches were con-
ducted iteratively from July to December 2020. We supplemented 
our Google searches with searches of the course and lab websites of 
instructors known to the authors to participate in quantitative ecol-
ogy and/or ecological forecasting education (based on membership 
and participation in EFI and related communities [e.g., Ecological 
Society of America]) during the same time period. Finally, we cre-
ated and distributed a Google Form through which we asked other 
members of the EF community to submit other known online re-
sources, which was disseminated via EFI communications (i.e., Slack, 
monthly newsletter, and via word-of-mouth during working group 
meetings) during 2020 (Figure 1). A complete database of the com-
piled resources is available via QUBES (Willson & Peters, 2021). We 
acknowledge that our database of online resources is incomplete 
because of the great number of resources available on the internet, 
particularly for learning basic concepts such as statistical comput-
ing languages. However, we believe our database is a representative 
subsample of all resources available for learning EF.

F I G U R E  1 Conceptual representation of methodology. Data collection and analysis at each of our three curriculum levels. From left to 
right, dark blue represents the process of data collection and analysis for online resources, teal represents the process for forecasting course 
lessons, and light blue represents the process for forecasting-adjacent courses. For each curriculum level, data were collected online via 
Google (online resources), course syllabi (forecasting course lessons), or course catalogs (forecasting-adjacent courses). Data were organized 
into the forecasting topic that best represented the material covered in the resource (multi-headed arrows) and the distribution of resources 
within each forecasting topic was displayed in pie charts. Black double-headed arrows represent the comparison of the distribution of 
resources (ecological forecasting curriculum landscape) between forecasting course lessons and online resources (left) and forecasting 
course lessons and forecasting-adjacent courses (right). The number of forecasting topics represented in the pie charts is random in this 
figure and serves only to show that the number of topics can differ by curriculum level.
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We collated a list of forecasting courses from which we identified 
topics covered in individual course lessons. EFI, a grassroots organiza-
tion focused on creating a community of practice around near-term EF, 
houses a database of known forecasting courses on its website (https://
ecofo​recast.org/resou​rces/educa​tiona​l-resou​rces/). The courses are 
largely self-identified, with instructors volunteering to include their 
syllabus on the website; when we knew of an EF course that was not 
on the website, we additionally asked individual instructors to submit 
their syllabus for inclusion on the website. As of March 15, 2022, the 
database includes nine courses at the undergraduate and/or graduate 
educational level that fall within our definition of a forecasting course 
and have a syllabus available online (Appendix S1). To ensure that we 
did not bias our sample by including only courses from the EFI website, 
we searched the course catalogs (i.e., including every department) of 
US land grant institutions for potential EF courses and contacted the 
instructors of courses thought to be on EF. We chose to sample US 
land grant institutions because this offered a representative subsample 
of all US higher education institutions, with substantial representation 
of Minority Serving Institutions (e.g., Hispanic-Serving Institutions, 
Historically Black Colleges and Universities, Tribal Colleges) and 2-
year colleges, as well as high and very high research intensity colleges 
and universities (Appendix S1). We found no additional courses on EF 
during this additional search (Appendix S1). Because we are aware of 
so few forecasting courses that match our criteria in the United States, 
we chose to include both undergraduate and graduate courses in our 
analysis of forecasting course lessons. For each of these nine courses, 
we used the syllabus to determine what topics are taught during the 
course. Specifically, we categorized each lesson title from the course 
schedule into one of the topics of EF defined below (Figure 1).

Finally, we compiled data on forecasting-adjacent courses avail-
able at a subset of 48 higher education institutions in the United 
States. We randomly selected institutions from a list published by 
The Edvocate (Lynch, 2019). We chose this list because it represents 
a comprehensive list of all colleges and universities in the United 
States, 1900 higher education institutions, including 2-year and 4-
year colleges, private and public universities, and for-profit and not-
for-profit institutions, and includes institutions from all 50 states. 
Sampling was not stratified, so our random subsample is represen-
tative of the relative frequency of different institution types (e.g., 
baccalaureate colleges, very high research intensity doctoral univer-
sities). For each institution, we systematically read the most recent 
course catalog and recorded undergraduate course names and de-
scriptions related to EF and the forecasting topic (defined below) 
that best defines the content of the course. More detailed explana-
tions about the data collection procedure for each curriculum level 
are available in Appendix S1.

2.3  |  Data categorization

We defined general topics that comprise EF, which we used to cat-
egorize the data we collected at each curriculum level (Figure 1). The 
topics represent the skills and concepts with which a student of EF 

should ideally become familiar during their education. We defined 
the forecasting topics via expert elicitation by multiple founding 
members of EFI, such that our topics represent EFI's current view 
of the requirements for a well-rounded education in EF. The top-
ics represent skills and concepts from multiple disciplines, including 
biological sciences, computer science, statistics, and social sciences 
(Appendix S1, Table 3). Our definition of forecasting topics using ex-
pert elicitation introduced bias in favor of the approach to EF pro-
moted by EFI, as noted in the Introduction.

The purpose of defining EF topics was to assess the distribu-
tion of resources within broad categories of knowledge and skills 
students are currently learning from EF at the different curriculum 
levels. We classified each online resource into one or more topics 
that best represent the subject content. We classified each lesson 
from forecasting courses into one topic that best represents the ma-
terial covered in the class for that lesson. Similarly, we categorized 
each forecasting-adjacent course under the topic that best describes 
the course. Examples of our classification scheme are provided in 
Appendix S1, Table 3.

EF requires concepts from a suite of disciplines. Specifically, we 
have included three topics that may be more traditionally associated 
with the humanities and social sciences than the physical sciences: 
science communication, social sciences, and ethics. We include sci-
ence communication as a foundational topic of EF because, as a field 
with a particular emphasis on applied research, communicating re-
search and outcomes is an integral component of many applications 
of EF (Dietze, 2017b). Similarly, topics in the social sciences, includ-
ing decision science and expert elicitation, offer a structured meth-
odology for scientists interfacing with diverse interested parties 
and incorporating many interests into forecasting workflows, while 
considering ethics (e.g., data science ethics, computer science ethics, 
ecology ethics) ensures that applications of EF operate within ethical 
boundaries (e.g., ensuring that data are open source when possible, 
crediting knowledge from community members with authorship and 
acknowledgments).

Finally, we strongly believe that any ecological research should 
incorporate the voices and ways of knowing of all interested par-
ties in questions of the health and preservation of our natural 
landscapes (David-Chavez & Gavin,  2018; Dawson et al.,  2019; 
Hill et al., 2020). Our forecasting topics include one type of cul-
turally relevant education under the title “Traditional Ecological 
Knowledge.” We recognize that by focusing only on Traditional 
Ecological Knowledge, we omit other categories of culturally rel-
evant educational material (e.g., culturally relevant educational 
materials for Black and Hispanic students; Corneille et al., 2020; 
Miriti, 2019; Rawlings-Goss et al., 2018). However, during our data 
collection, we found no materials at any curriculum level that spe-
cifically focused on providing culturally relevant forecasting ed-
ucation to students of minority identities other than Indigenous 
students. Therefore, we chose to define this topic as “Traditional 
Ecological Knowledge” instead of “Culturally Relevant Materials” 
to specifically highlight the lack of materials for students from 
other minority ethnic/racial backgrounds.
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2.4  |  Data analysis

Our data analysis focused on addressing two components of fore-
casting education attainability: (1) the distribution of resources 
among forecasting topics at each curriculum level (Figure 1), and (2) 
the accessibility of forecasting education in terms of institution type 
(e.g., the selectivity of the institution).

To address the distribution of resources among forecasting 
topics at each curriculum level (i.e., whether some topics are more 
represented within the available resources than others), we used �2 
tests using the freqtables package (Cannell, 2020) in the R statisti-
cal environment (R version 4.1.2) (R Core Team, 2021). We interpret 
the �2 as indicating that resources are unevenly distributed among 
forecasting topics when the results are statistically significant (i.e., 
p < α when α = .05). Using a graphical representation of the data, we 
then specifically focused on identifying topics that are overrepre-
sented and underrepresented at each curriculum level. For EF curric-
ulum development, the overrepresentation of some topics relative 
to others suggests that there are sufficient resources available for 
those topics and additional resource development could focus on 
other topics. On the other hand, underrepresentation of some top-
ics relative to others highlights gaps to fill with further resource 
development.

As a second approach to characterizing the availability of re-
sources among curriculum levels, we used Fisher's exact tests to 
quantify the dissimilarity between different curriculum levels. 
Specifically, we compared the distribution of resources among 
forecasting topics between online resources and forecasting 
course lessons, and between forecasting-adjacent courses and 
forecasting course lessons. We compared forecasting course 
lessons to the other two curriculum levels because forecasting 
course lessons comprise our best representation of what EF ex-
perts believe students should learn to become ecological fore-
casters. Fisher's exact test was chosen because this test is similar 
to a chi-squared test when the dimensions of the contingency 
matrix are greater than 2 × 2 but is robust to zero frequencies. 
Fisher's exact tests were computed using the freqtables package 
(Cannell, 2020), altering the default function to use the hybrid ap-
proximation option for large contingency tables and 2000 Monte 
Carlo permutations. In this way, we not only considered the distri-
bution of resources within each curriculum level, but also relative 
to the current standard (i.e., forecasting course lessons) within the 
sub-field.

We considered the distribution of course-based resources 
at different curriculum levels among institution types. We as-
signed each institution a type (e.g., R1 = doctoral universities with 
very high research activity, B = baccalaureate universities) using 
Carnegie Classifications, as defined by Indiana University's Carnegie 
Classification of Institutions of Higher Education database (https://
carne​giecl​assif​icati​ons.iu.edu/index.php). We then grouped the 
Carnegie Classifications to simplify the interpretation of institution 
type (see Appendix S1, Table 4 for the grouping system of the nine 
classification types).

We conducted a logistic regression using the glm() function in 
the stats package (R Core Team,  2021) to quantify the difference 
in forecasting-adjacent course offerings by institution type. Our 
logistic regression used a binary variable corresponding to institu-
tion type A/B versus M/D. The binary classification A/B (nA/B = 535) 
corresponds to the following institution types: Associate's Colleges 
(A), Associate's/Bachelor's Colleges (A/B), Bachelor's Colleges (B), 
and Tribal Colleges and Universities (TC). The binary classification 
M/D (nM/D = 950) corresponds to institution types Master's Colleges 
and Universities–Smaller Programs (M3), Master's Colleges and 
Universities–Larger Programs (M1), Doctoral Universities–High re-
search activity (R2), Doctoral Universities–Highest research activity 
(R1), and Doctoral/Professional Universities (D/PU). The A/B and 
M/D categories are the response variable in the logistic regression 
and the forecasting topics into which courses fell are the predictor 
variables. We used this binary categorization to increase the sta-
tistical power of the analysis by including more courses in fewer 
institution type categories. We grouped Tribal colleges (TC) with as-
sociate's and baccalaureate institutions (A/B) because the two Tribal 
colleges included in this analysis do not offer degrees higher than 
bachelor's degrees. We removed the topics “Model Assessment” 
and “Traditional Ecological Knowledge” from this analysis because 
only one course was available for each topic, which limited our 
ability to make inference regarding these topics. We interpret the 
coefficients of the model as the odds of an institution being an as-
sociate's or baccalaureate institution (A/B) relative to a master's or 
doctoral institution (M/D), given the frequency of offering courses 
in a given forecasting topic.

3  |  RESULTS

3.1  |  The EF curriculum landscape differs by 
curriculum level

Our quantitative analysis of resources for teaching and learning EF 
reveals differences in how resources are distributed among fore-
casting topics, with different gaps existing at different curriculum 
levels (Figure 2). The distribution of resources within the forecasting 
topics is uneven at each curriculum level (online resources: �2 = 364, 
df = 18, n = 409, p < .005; forecasting course lessons: �2 = 163, df = 17, 
n = 192, p < .005; forecasting-adjacent courses: �2 = 2891, df = 17, 
n = 1485, p < .005), indicating that some topics are more intensively 
covered than others at each curriculum level. Further, the distribu-
tion of forecasting course lessons among the forecasting topics is 
more even than the distribution of online resources (Fisher's exact 
test: nonline = 409, nlessons = 192, p < .005) and forecasting-adjacent 
courses (Fisher's exact test: ncourses = 1485, nlessons = 192, p < .005). 
This implies that many topics are over- and underrepresented within 
online resources and forecasting-adjacent courses with respect to 
developing a comprehensive EF curriculum at each of these levels, 
as defined by evenly covering the topics identified via expert elicita-
tion to comprise an EF education. For example, a disproportionately 
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high number of online resources are dedicated to basic concepts of 
computer coding (Figure 2) relative to both the number of resources 
dedicated to other topics among online resources and the number 
of resources dedicated to basic concepts of computer coding at the 
other curriculum levels (Table 1). On the other hand, basic concepts 
of forecasting, such as what a forecast entails and why prediction 
is important in the sciences, are an underrepresented topic among 
both online resources and forecasting-adjacent courses relative 
to its representation among forecasting course lessons (Figure  2, 
Table 1).

It is also worth noting that some topics are not represented at all 
at one or more curriculum levels. Ethical considerations in forecast-
ing and in related disciplines (ecology, or computer and data sciences) 
were not represented in our database of online resources and only 
three of 192 forecasting course lessons in three of nine courses cov-
ers forecasting ethics. This topic highlights important considerations 
when conducting EF research, including who should be involved in 
deciding what forecasts are made and whether data should be made 
publicly available. The forecasting topics (see Appendix S1, Table 3), 
Science Communication and Traditional Ecological Knowledge are 
also not represented in forecasting courses. Among our sample of 
forecasting-adjacent courses, there are no courses specifically cov-
ering Data Assimilation or State Space Models. These topics that 
are not represented in a curriculum level represent particularly per-
sistent gaps in EF curricula (Table 1).

3.2  |  Availability of forecasting and forecasting-
adjacent courses differs by institution type

We next considered whether there are patterns in the availability 
of resources at the course-based curriculum levels (i.e., forecasting 
course lessons and forecasting-adjacent courses) across institution 
types. In general, more forecasting and forecasting-adjacent courses 
are available at doctoral universities than at colleges and universities 
offering only associate's, bachelor's, or master's degrees (Figure 3; 
Table 2). Forecasting courses are currently almost exclusively taught 
at doctoral universities with very high research activity (institution 

F I G U R E  2 The ecological forecasting curriculum landscape differs by curriculum level. (a) Online resources. (b) Lessons in forecasting 
courses. (c) Forecasting-adjacent courses. Colors are the same in all panels and correspond to the figure legend. The slices corresponding 
to the forecasting topics are in the same order in each panel. The colors in each panel are in the same order as in the figure legend, starting 
from the 12:00 position and moving counterclockwise in the plots and starting from left and moving top to bottom in the legend. Total 
number of resources in each curriculum level is shown below each panel's title.

n = 409
Open−access, Online Resources(a)

n = 192
Forecasting Course Lessons(b)

n = 1,485
Forecasting−Adjacent Courses(c)

Basics of Coding
Basics of Ecology
Basics of Forecasting
Basics of Statistics
Data Sources

Data Assimilation
Machine Learning
Mechanistic Models
Model Assessment
Probability & Uncertainty
State Space Models
Statistical Models

Data Manipulation
Data Visualization
Workflows & Open Science
Working with Data

Science Communication
Social Science
Traditional Ecological Knowledge

TA B L E  1 Examples of over- and underrepresented topics at each 
of the three curriculum levels, based on Figure 2. These examples 
serve to reinforce the examples we use in the Discussion. Readers 
are invited to identify other over- and underrepresented topics 
based on the data and Figure 2.

Curriculum level
Example topics 
overrepresented

Example topics 
underrepresented

Online resources Basics of coding Basics of Forecasting

Ethics

Forecasting 
course 
lessons

Ethics

Science communication

Traditional ecological 
knowledge

Forecasting-
adjacent 
courses

Basics of 
ecology

Basics of forecasting

Data assimilation

State space models
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    |  9 of 16WILLSON et al.

type R1, n = 7/9), while only one forecasting course is taught at a 
highly selective baccalaureate institution (institution type B, Smith 
College; Figure 3b,c) and one is taught outside of the university set-
ting (EFI summer course).

There is more heterogeneity in the type of institutions offering 
forecasting-adjacent courses than in the institutions offering fore-
casting courses (Figure 3a). While more forecasting-adjacent courses 
are offered at master's and doctoral universities (Figure 3a), other 
institution types (i.e., offering lower degrees) offer courses corre-
sponding to almost every forecasting topic (Appendix S1, Table 3). 
Specifically, associate's colleges offer a range of courses relevant 
to forecasting, particularly within topics associated with computer 
and data sciences (Figure 3a). Our logistic regression model offers 
insight into the topics that forecasting-adjacent courses cover at 
different types of institutions. Specifically, we interpret the coef-
ficients of our logistic regression (Table 2) as the odds of an insti-
tution being an associate's- or bachelor's-granting institution (A/B) 
relative to a master's- or doctorate-granting institution (M/D), given 
the frequency of offering courses of a given forecasting topic. Using 
this interpretation, three of the six topics indicating a higher odds 
of an institution being A/B (i.e., offering less advanced degrees) are 
introductory topics, while three are related to more advanced top-
ics (Table 2). No topics representing advanced quantitative concepts 
except Machine Learning significantly contribute to the difference 
between associate's and baccalaureate institutions and master's and 

doctoral institutions, although two topics (Data Manipulation and 
Mechanistic Models) are marginally nonsignificant.

4  |  DISCUSSION AND 
RECOMMENDATIONS FOR NE X T STEPS

4.1  |  Gaps are visible in the existing resources at 
each curriculum level

Previous literature has discussed the importance of understanding 
the current curriculum landscape as a first step in improving cur-
riculum in higher education (NASEM, 2020, 2021a; Rawlings-Goss 
et al.,  2018). We identified resources that already exist and high-
lighted gaps where finite resources could be allocated to build a 
more comprehensive curriculum in the context of EF. For example, 
we show that there is a need to introduce high-level quantitative 
skills to undergraduate students in forecasting and forecasting-
adjacent courses (Figure 2, Appendix S1). This finding is consistent 
with previous research indicating that certain data science skills are 
underrepresented in undergraduate education (Emery et al., 2021) 
and that undergraduate EES curriculum is an appropriate venue for 
introducing students to high-level quantitative skills (Barraquand 
et al., 2014; Carey et al., 2020). This finding also underscores pre-
vious research findings that students recognize their own lack of 

F I G U R E  3 Institution type influences the availability of resources in each forecasting topic. Institution type is depicted by a simplification 
of Carnegie Classification system. Categories in the legend are as follows: A = Associate's college, A/B = Associate's/Bachelor's College, 
B = Bachelor's College, D/PU = Doctoral/Professional University, M1 = Master's Colleges and Universities – Larger Program, M3 = Master's 
Colleges and Universities – Smaller Program, R1 = Doctoral University – Very High Research Activity, R2 = Doctoral University – High 
Research Activity, TC = Tribal College. See Appendix S1, Table 4 for the list of institutions per institution type and the Carnegie Classification 
system. (a) The number of forecasting-adjacent courses per institution. Courses per institution were computed by dividing the total number 
of courses per forecasting topic and institution type by the number of institutions in each institution type. (b) Graduate and undergraduate 
forecasting course lessons per institution. Lessons per institution were computed by dividing the total number of lessons per forecasting 
topic and institution type by the number of institutions in each institution type. (c) Undergraduate forecasting course lessons per institution. 
As in (b), but only visualizing undergraduate forecasting courses and excluding forecasting courses at the graduate level.

State Space Models

Data Assimilation

Model Assessment

Traditional Ecological Knowledge

Workflows & Open Science

Social Science

Data Visualization

Probability & Uncertainty

Machine Learning

Basics of Forecasting

Mechanistic Models

Ethics

Data Manipulation

Science Communication

Working with Data

Data Sources

Statistical Models

Basics of Coding

Basics of Statistics

Basics of Ecology

0 30 60 90 120
Courses per Institution

B

A/B

A

R1

R2

D/PU

M1

M3

TC

Forecasting−Adjacent Courses(a)

0.0 2.5 5.0 7.5 10.0
Lessons per Institution

Forecasting Courses(b)

0 5 10 15
Lessons per Institution

Undergraduate Forecasting Courses(c)

 20457758, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10001 by U

niversity O
f N

otre D
am

e, W
iley O

nline L
ibrary on [23/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 16  |     WILLSON et al.

quantitative training in undergraduate ecology curriculum and ret-
roactively desire more training in quantitative concepts and skills 
(Barraquand et al., 2014). These skills additionally have the potential 
to improve students' problem-solving abilities and scientific work-
force preparedness (Barraquand et al., 2014; Farrell & Carey, 2018; 
Hounshell et al., 2021).

Introductory concepts are particularly overrepresented among 
online resources and forecasting-adjacent courses. This is relevant 
because these resources can supplement formal instruction on EF, 
offering educational opportunities to students without access to 
forecasting courses. The overrepresentation of introductory con-
cepts is likely because these topics are applicable to many science 
domains and are not specific to EF. This is encouraging because 
such introductory concepts can similarly contribute to other 
quantitative, interdisciplinary EES curricula that are not specifi-
cally related to EF. Further, the overrepresentation of some top-
ics points to a positive feature of the EF curriculum landscape: 
multiple resources are likely to exist on the same introductory 
concepts, offering different perspectives and ways of teaching 
information to students with diverse learning styles. We suggest 
that further resource development efforts may not need to focus 

on introductory concepts and instead can focus on underrepre-
sented advanced topics.

The complete absence of certain forecasting topics helps iden-
tify gaps where new resources could be developed to offer a more 
comprehensive suite of resources to approach EF in the way pro-
moted by EFI. For example, online resources could be developed to 
allow students to explore the ethical implications of making ecolog-
ical forecasts. Similarly, topics related to disseminating forecasts 
to interested parties could be incorporated as specific lessons into 
more forecasting courses or could be offered as forecasting-adjacent 
courses at more institutions. Finally, the fact that there are few re-
sources for incorporating non-Western ways of knowing into EF 
courses highlights the need for more diverse instructors teaching EF 
courses and contributing to resource and course development. We 
recognize that EES educators and researchers will make their own 
decisions about which topics warrant their own courses or course 
lessons. For example, the topic of state space models may be more 
suited for incorporation into existing statistical modeling courses, 
rather than having a course exclusively on this topic. We anticipate 
that further refinement of our list of topics as more EF educators 
contribute to our research will help the EF community reach consen-
sus on what topics deserve their own courses and course lessons. 
Similarly, other EES sub-disciplines should consider what topics are 
appropriate for entire courses and course lessons upon applying our 
approach.

4.2  |  Limitations to gap identification

Educating undergraduate students is a complex undertaking, mean-
ing that our results should be considered in the context of how 
students learn. For example, educators understand that some top-
ics can be more suitable to one curriculum level than another. The 
inclusion of ethics as a lesson within forecasting courses may help 
students make more connections between ethics and the devel-
opment of forecasts (Emery et al.,  2021; NASEM,  2020,  2021b). 
Additionally, teaching interdisciplinary topics such as ethics and sci-
ence communication within forecasting courses is consistent with 
science instructors' role and virtue responsibilities (i.e., the respon-
sibilities conferred upon science instructors as science instructors 
and as moral agents in the practice of teaching science students, re-
spectively) to teach students these topics within the context of the 
scientific disciplines (Sethy, 2018). When topics such as ethics are 
embedded into disciplinary courses, our method for determining the 
topics taught within forecasting-adjacent courses may have failed 
to identify that ethics was taught. Therefore, it is possible that we 
have underestimated how often ethics and similar topics are taught. 
Similarly, the mode of knowledge transmission, whether online (e.g., 
online resources or virtual courses) or in-person (e.g., traditional 
courses) may impact student comprehension and learning (Adedoyin 
& Soykan, 2020). While we did not consider explicitly the mode of 
knowledge transfer in this study, we encourage future studies to do 
so. Finally, it is possible that we mischaracterized the availability of 

TA B L E  2 Coefficients from the logistic regression comparing the 
prevalence of courses in each forecasting topic among associate's- 
and bachelor's-granting institutions (A/B) and master's- and 
doctoral-granting institutions (M/D).

Forecasting topic Estimate [95% CI] p-value

Intercept 1.06 [0.81, 1.38] .68

Basics of ecology 2.24 [1.60, 3.16] <.001

Basics of forecasting 9.46 [2.10, 42.7] .003

Basics of statistics 1.74 [1.20, 2.51] .003

Data manipulation 1.89 [0.93, 3.84] .07

Data sources 0.89 [0.55, 1.44] .63

Data visualization 1.47 [0.60, 3.61] .39

Ethics 8.52 [2.45, 29.6] <.001

Machine learning 2.68 [1.00, 7.20] .05

Mechanistic models 3.08 [0.95, 9.96] .06

Probability & Uncertainty 1.73 [0.61, 4.96] .29

Science communication 1.38 [0.74, 2.55] .30

Social science 1.51 [0.47, 4.89] .48

Statistical models 1.43 [0.92, 2.22] .11

Workflows & Open science 0.38 [0.11, 1.27] .11

Working with data 3.44 [1.65, 7.16] <.001

Note: The left column includes the names of the forecasting topics 
used to predict the institution type at which the course is offered 
(either associate's/baccalaureate institution or master's/doctoral 
institution). The middle column includes the coefficient estimates and 
95% confidence intervals (CIs) in brackets. The right column includes 
the p-values of the coefficients, indicating whether the coefficient is 
significantly different from zero. Rows are shaded gray if the p-value 
is significant at � = .05. The p-value for the topic “Machine Learning” 
is below � before rounding. Coefficients have been exponentiated to 
represent odds.
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    |  11 of 16WILLSON et al.

resources by failing to account for the depth to which a topic is cov-
ered in a given resource. For example, if many resources cover sta-
tistical models at a surface level, students may in reality have fewer 
resources available to them to learn statistical models than to learn a 
topic that is covered by few resources, but more in depth.

Similar to considering the context in which forecasting topics are 
taught, by assuming that forecasting course lessons represent the 
“ideal” distribution of resources among forecasting topics, we rec-
ognize that we introduce some bias into our analysis. Specifically, 
the composition of forecasting courses is heavily dependent upon 
who is teaching forecasting and which resources the instructors 
are using to structure their lessons. Similarly, many current EF in-
structors share resources, such as textbooks and syllabi (e.g., on 
EFI's website), contributing to strong nonindependence between 
EF courses in our database. Owing to both the nonindependence 
between EF courses and common demographics between students 
in EF courses (e.g., mainly graduate students in ecology and envi-
ronmental sciences, often with prior exposure to quantitative con-
cepts and coding and attending wealthy universities), there may be 
shared expectations between EF courses regarding the concepts 
and skills students have prior to the course. For example, many cur-
rent EF courses expect students to enter EF courses with founda-
tional knowledge in ecology and statistics. We, therefore, advocate 
for repeating our approach to analyzing the EF curriculum landscape 
and continuing to use forecasting course lessons as the expected 
distribution of courses, as EF matures as a discipline.

4.3  |  Patterns exist in the accessibility of resources 
at each curriculum level

Equally important to the distribution of existing resources among 
forecasting topics is the accessibility of resources. Accessibility of 
online resources is restricted to students with reliable broadband 
internet access and personal computers. Significant portions of stu-
dents in rural areas, Tribal communities, low-income households, 
and from traditionally underrepresented racial and ethnic back-
grounds are less likely to have reliable internet and computer access 
than “traditional” students, who are mainly from urban and subur-
ban, middle class, White households (Dolcini et al., 2021; Sanders & 
Scanlon, 2021).

Aside from online resources, the accessibility of courses, both 
forecasting and forecasting-adjacent, is biased toward highly selec-
tive institutions. Based on our representative database of forecast-
ing and forecasting-adjacent courses, we show that all forecasting 
courses and a substantial portion of forecasting-adjacent courses are 
taught at doctoral-granting institutions with very high research ac-
tivity (R1 or highly selective baccalaureate institutions (B; Figure 3, 
Table 2). We recognize that we may have missed some forecasting 
courses, especially if they are not labeled as such in course descrip-
tions. Similarly, by analyzing a subsample of all US higher education 
institutions, we have missed a great deal of forecasting-adjacent 
courses at unsampled institutions and even in sampled institutions, 

some courses without sufficient course description online were in-
evitably missed. Nevertheless, our analysis highlights that students 
living in areas with limited options for higher education (e.g., areas 
with only community college options; “academic-match education 
deserts”) may be unable to enroll in forecasting courses (Klasik 
et al., 2018). This disparity is compounded by the fact that 80% of 
White Americans enroll in the top 500 higher education institutions, 
where forecasting courses are more likely to be offered, while 75% 
of students from underrepresented racial and ethnic backgrounds 
do not enroll in the top 500 institutions (NASEM, 2021b). This high-
lights the fact that the racial/ethnic identity and socioeconomic sta-
tus of students influence the accessibility of forecasting education, 
disparities which should become a high-priority consideration in the 
development of EF curriculum.

Although we did not consider them in this analysis, the rise of 
MOOCs offers a promising way to deliver course content on topics 
related to ecological forecasting, including quantitative concepts, 
to students with access to any higher education institution, not just 
those with access to highly selective institutions (Zawacki-Richter 
et al., 2018). However, learning via MOOCs presupposes that stu-
dents have access to the internet and the computer hardware re-
quired for attending the course and completing assignments. As is 
true for any online resource, these assumptions do not hold for many 
students living in rural communities, Tribal communities, low-income 
households, among other living arrangements (Dolcini et al., 2021; 
Sanders & Scanlon, 2021). We advocate for future iterations of this 
analysis to include MOOCs and for the continued development of 
MOOCs related to ecological forecasting and quantitative ecology. 
We additionally urge resource developers, educators, and research-
ers to additionally consider the needs of students in such low-
internet and resource environments.

The fact that most advanced topics related to EF (e.g., mecha-
nistic and statistical models, probability and uncertainty) are equally 
represented at associate's and bachelor's-granting institutions com-
pared to master's and doctoral-granting institutions (Table 2) indi-
cates that advanced quantitative curriculum is similarly developed 
at both of these institution types. Students at both institution types 
could benefit from more training in advanced quantitative concepts, 
consistent with the fact that advanced quantitative concepts tend to 
be less well represented among forecasting-adjacent courses than 
introductory concepts (Figure  2). Meanwhile, the fact that fewer 
forecasting-adjacent introductory courses are available across our 
subsample of master's and doctorate-granting institutions highlights 
that these could benefit from coordination of introductory course-
work with partnering 2-year institutions (e.g., community college to 
university programs).

4.4  |  Application to other disciplines

The analysis of both the availability and accessibility of undergradu-
ate educational resources should not be interpreted as limited to EF. 
Researchers and educators in other sub-disciplines of EES can assess 
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the availability of resources for teaching and learning their discipline 
by identifying the topics relevant to the discipline. Further, two of 
our main conclusions are applicable to any EES researcher or educa-
tor interested in improving the availability and accessibility of EES 
education. First, the relative lack of educational resources in more 
advanced statistical and computational concepts suggests that ad-
ditional quantitative resources could improve the education of EES 
undergraduate students. Second, the fact that EF resources at all 
three curriculum levels have strong barriers to access that dispro-
portionately affect students from marginalized communities is ap-
plicable to the entire EES community. Increasing the accessibility of 
educational resources across curriculum levels should be a priority 
for EES educators and researchers as a community.

4.5  |  Progress and future directions

4.5.1  |  Current education initiatives

Here, we describe several initiatives we have implemented to begin 
addressing identified gaps in EF education. These initiatives were 
co-developed by the co-authors while the analysis of the avail-
ability and accessibility of ecological forecasting education was 
undertaken. The initiatives are designed to meet two objectives: 
(1) increase representation of underrepresented minority students 
in data science education in the United States and (2) increase the 
number of resources for teaching and learning about high-level 
quantitative concepts related to ecological forecasting. To increase 
the representation of underrepresented minority students in data 
science, we have developed a partnership between the Ecological 
Forecasting Initiative and staff and faculty from three Minority 
Serving Institutions with high Native American enrollment (Salish 
Kootenai College, University of New Mexico—Gallup, and California 
Polytechnic State University—Humboldt). The objective of this part-
nership is to identify the specific barriers to participation of students 
from marginalized backgrounds and attending under-resourced 
higher education institutions and begin reducing the identified bar-
riers. To increase the resources available for teaching and learn-
ing quantitative concepts, members of the Ecological Forecasting 
Initiative partnered with Environmental Data-Driven Inquiry and 
Exploration (EDDIE) to develop educational modules on quantitative 
concepts. Importantly, these modules emphasize specific compo-
nents of ecological forecasting that we identified as being underrep-
resented, including uncertainty quantification and data assimilation. 
Through these current initiatives, we are beginning to address some 
of the gaps in both the availability and accessibility of ecological 
forecasting education identified in our analysis.

Native American undergraduate students are a subset of under-
represented minority students in the sciences in the United States, 
with pervasive socioeconomic barriers to success in the univer-
sity context (Alexiades et al.,  2021). Consistent with objective (1), 
we are currently evaluating existing data science and EF resources 
to address the accessibility of EF education for Native American 

undergraduate students. It is understood that lack of internet ac-
cess is a barrier to many students across the country; however, this 
problem is exacerbated among Native American communities due 
to chronic disenfranchisement of Tribal citizens and the continued 
legacy of colonization within the United States. According to the 
FCC, across the country, about 6% of individuals lack internet access 
(Federal Communications Commission,  2012). In contrast, 18% of 
Tribal reservation residents do not have access to the internet. Of 
the limited access available on reservations, there is a high reliance 
on smartphones and cellular services for access to the internet. As 
a result, we are evaluating whether (1) materials can be used in low 
to no internet environments; (2) materials can be used on mobile de-
vices, the only computers some students have; and (3) materials can 
be modified to meet technical needs of communities, such as being 
modified to be used in no internet environments or on smartphones. 
This initiative has started with considering the needs of students at 
the University of New Mexico—Gallup, a 2-year institution with high 
enrollment of members of the Navajo Nation.

Bridging the gap between objectives (1) and (2), increasing rep-
resentation of underrepresented minority students and increasing 
resources for teaching and learning quantitative concepts, we have 
integrated Traditional Ecological Knowledge into an R Data Analysis 
course at Salish Kootenai College (SKC). SKC is a Tribal college serv-
ing members of nearly 70 Tribes, making efforts to teach students 
how to incorporate the questions, issues, and experiences of their 
communities into applied science (e.g., via ecological forecasting) 
particularly relevant. Students were taught to use the R statistical 
computing language to quantitatively analyze water quality data 
using a K'avi Tribe Water Quality Dataset. Water quality data analysis 
is relevant to the production of mandatory reports that many Tribal 
governments must send to the US Environmental Protection Agency 
(EPA) annually. The K'avi Tribe, the Water Quality Dataset, and the 
reference watershed are fictional, created so that no one Tribe 
would feel singled out or excluded when this class is taught at SKC. 
The complexity of water resources within the fictional watershed 
and the 10-year dataset reflect realistic landscape and water quality 
conditions present at many Reservations in the Intermountain West, 
US. Indeed, the dataset is an amalgam of data collected by one co-
author (Smies) for five different Tribes in Montana, US.

Additionally, the Traditional Ecological Knowledge (TEK) sites 
included in the K'avi Tribe Water Quality Dataset mirror the spir-
itual and cultural uses of water resources by many Tribes in the 
West (Rattling Leaf Sr, 2022). Today, the EPA (the primary funder 
of Tribal water quality programs) only evaluates monitoring data 
based upon physical and biological parameters. Tribes are left to 
create their own TEK analysis methods and many Tribal managers 
are not equipped with the resources to do so. As a result, TEK 
values are not given equal protection via Tribal water quality stan-
dards, despite their importance. In response, students in the SKC 
R Data Analysis course were tasked with ranking TEK values as-
sociated with the important spiritual and cultural sites in the K'avi 
Tribe watershed. Then, the students were taught coding strate-
gies that allowed them to combine the quantitative and qualitative 
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datasets. Data visualizations of the combined data created new 
and more powerful ways to evaluate the physical and cultural 
health of the watershed. By ascribing equal value to both the 
Western and Indigenous scientific approaches, students' analyses 
more fully described ecosystem function. This approach encour-
ages students to learn quantitative concepts within a framework 
that facilitates making connections between coursework and their 
lives and cultural values, an approach that has been shown to im-
prove the persistence of Native American students in undergrad-
uate studies (McMahon et al., 2019).

We address objective (2) by expanding the breadth of re-
sources available for teaching and learning ecological forecasting 
via Macrosystems EDDIE. Macrosystems EDDIE modules provide 
students and faculty with hands-on, real-world learning activities 
to bolster their understanding of macrosystems ecology through 
modeling and forecasting (Macro​syste​msEDD​IE.org). The new-
est four modules (modules 5–8) are primarily focused on teaching 
macrosystems ecology and EF concepts using National Ecological 
Observatory Network data (Carey et al., 2020; Farrell & Carey, 2018; 
Hounshell et al., 2021; Moore, Thomas, et al., 2022, Moore, Carey, & 
Thomas, 2022; Woelmer et al., 2022). Each of the four forecasting-
focused Macrosystems EDDIE modules covers different components 
of the iterative forecasting cycle, which include building a model, 
quantifying uncertainty, generating a forecast, communicating a fore-
cast, assessing a forecast, and updating a forecast with observations.

4.5.2  |  Future directions

Coursework, such as forecasting and forecasting-adjacent courses, 
cannot be fully inclusive without considering in-classroom inclusive 
best practices (Rawlings-Goss et al., 2018), such as active learning 
strategies (Corwin et al., 2018; Graham et al., 2013), including cul-
turally relevant examples (Harris et al., 2020), and providing alterna-
tive evaluation methods (Miriti, 2019), among others. Our analysis 
neglected this critical component of EF curriculum by focusing on 
the courses themselves, rather than the context in which they are 
taught. Future efforts should include more opportunities for in-
structors to learn about inclusive pedagogy best practices, opportu-
nities for instructors and forecasting practitioners to discuss barriers 
to inclusive instruction, and the implementation of working groups 
aimed toward addressing the identified barriers.

Numerous recent publications have highlighted the necessity of 
targeted interventions to improve the persistence of students from tra-
ditionally underrepresented racial and ethnic groups, including Black, 
Hispanic, and Indigenous students, in scientific disciplines (Bowser 
& Cid, 2021; Cheryan et al., 2017). We have undertaken numerous 
efforts to develop curricula that address the needs of Indigenous stu-
dents. However, few efforts within the EFI community have focused 
on the needs of other racial and ethnic minorities, including Black and 
Hispanic students. Strategies to improve Black and Hispanic student 
persistence can be similar to those targeting Indigenous students, in-
cluding the incorporation of Black students' cultural values into the 

curriculum (Collins,  2018; Corneille et al.,  2020), addressing local 
community problems through coursework (Corneille et al.,  2020), 
and applying the curriculum to students' lived experiences (Harris 
et al.,  2020). Future efforts should focus on identifying and imple-
menting strategies for developing EF curriculum that improves Black 
and Hispanic student persistence, including partnerships with Black 
and Hispanic educators and forecasting practitioners. Additionally, 
future EF curriculum development efforts should consider providing 
resources and courses in languages other than English.

AUTHOR CONTRIBUTIONS
Alyssa M. Willson: Conceptualization (lead); data curation (lead); for-
mal analysis (equal); investigation (lead); methodology (lead); valida-
tion (lead); visualization (equal); writing – original draft (lead); writing 
–  review and editing (lead). Hayden Gallo: Data curation (support-
ing); formal analysis (equal); investigation (supporting); methodol-
ogy (supporting); visualization (equal); writing – review and editing 
(supporting). Jody A. Peters: Methodology (supporting); project 
administration (lead); supervision (equal); writing – review and edit-
ing (equal). Antoinette Abeyta: Writing – original draft (supporting). 
Nievita Bueno Watts: Conceptualization (supporting); writing – re-
view and editing (supporting). Cayelan C. Carey: Funding acquisition 
(equal); writing – original draft (supporting); writing – review and ed-
iting (equal). Tadhg N. Moore: Writing – original draft (supporting). 
Georgia Smies: Writing –  original draft (supporting); writing –  re-
view and editing (supporting). R. Quinn Thomas: Funding acquisition 
(equal); writing –  original draft (supporting); writing –  review and 
editing (equal). Whitney M. Woelmer: Writing – original draft (sup-
porting); writing –  review and editing (equal). Jason S. McLachlan: 
Funding acquisition (equal); supervision (equal); writing – review and 
editing (equal).

ACKNOWLEDG MENTS
The authors are thankful to Ben Toh for his help with conceptualiz-
ing online data collection, and Helena Kleiner and Megan Vahsen for 
their comments on early versions of the manuscript.

FUNDING INFORMATION
This work was supported by the NSF Research Coordination Network 
grant 1926388, and an Alfred P. Sloan Foundation grant. A.M.W. was 
supported by an NSF Graduate Research Fellowship and an Arthur J. 
Schmitt Leadership Fellowship in Science and Engineering from the 
University of Notre Dame. C.C.C., T.N.M., R.Q.T., and W.M.W. were 
supported by a grant for Macrosystems EDDIE (DEB-1926050).

CONFLIC T OF INTERE S T S TATEMENT
The authors declare no competing interests.

OPEN RE SE ARCH BADG E S

This article has earned an Open Data badge for making publicly 
available the digitally-shareable data necessary to reproduce the 

 20457758, 2023, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10001 by U

niversity O
f N

otre D
am

e, W
iley O

nline L
ibrary on [23/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://macrosystemseddie.org


14 of 16  |     WILLSON et al.

reported results. The data is available at https://doi.org/10.6084/
m9.figsh​are.c.59954​35.v1.
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